Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 947
Filtrar
1.
Sci Rep ; 14(1): 7723, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565894

RESUMO

Between 2016 and 2018, the Agriculture Research Center's Sakha Agriculture Research Station conducted two rounds of pedigree selection on a segregating population of cotton (Gossypium barbadense L.) using the F2, F3, and F4 generations resulting from crossing Giza 94 and Suvin. In 2016, the top 5% of plants from the F2 population were selected based on specific criteria. The superior families from the F3 generation were then selected to produce the F4 families in 2017, which were grown in the 2018 summer season in single plant progeny rows and bulk experiments with a randomized complete block design of three replications. Over time, most traits showed increased mean values in the population, with the F2 generation having higher Genotypic Coefficient of Variance (GCV) and Phenotypic Coefficient of Variance (PCV) values compared to the succeeding generations for the studied traits. The magnitude of GCV and PCV in the F3 and F4 generations was similar, indicating that genotype had played a greater role than the environment. Moreover, the mean values of heritability in the broad sense increased from generation to generation. Selection criteria I2, I4, and I5 were effective in improving most of the yield and its component traits, while selection criterion I1 was efficient in improving earliness traits. Most of the yield and its component traits showed a positive and significant correlation with each other, highlighting their importance in cotton yield. This suggests that selecting to improveone or more of these traits would improve the others. Families number 9, 13, 19, 20, and 21 were the best genotypes for relevant yield characters, surpassing the better parent, check variety, and giving the best values for most characters. Therefore, the breeder could continue to use these families in further generations as breeding genotypes to develop varieties with high yields and its components.


Assuntos
Fibra de Algodão , Gossypium , Melhoramento Vegetal , Cruzamentos Genéticos , Egito , Gossypium/genética , Fenótipo , Locos de Características Quantitativas
2.
Environ Res ; : 118867, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38593936

RESUMO

In the sparse studies for multiple pathway exposure, attention has predominantly been directed towards developed regions, thereby overlooking the exposure level and health outcome for the inhabitants of the semi-arid regions in northwest China. However, cities within these regions grapple with myriad challenges, encompassing insufficient sanitation infrastructure and outdated heating. In this study, we analyzed the characteristics and sources of polycyclic aromatic hydrocarbons (PAHs) pollution in PM2.5, water, diet, and dust during different periods in Lanzhou, and estimated corresponding carcinogenic health risk through inhalation, ingestion, and dermal absorption. Our observations revealed the concentrations of PAHs in PM2.5, food, soil, and water are 200.11 ng m-3, 8.67 mg kg-1, 3.91 mg kg-1, and 14.5 ng L-1, respectively, indicating that the Lanzhou area was seriously polluted. Lifetime incremental cancer risk (ILCR) showed a heightened cancer risk to men compared to women, to the younger than the elderly, and during heating period as opposed to non-heating period. Notably, the inhalation was the primary route of PAHs exposure and the risk of exposure by inhalation cannot be ignored. The total environmental exposure assessment of PAHs can achieve accurate prevention and control of PAHs environmental exposure according to local conditions and targets.

3.
Food Sci Nutr ; 12(4): 2886-2895, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628182

RESUMO

For thousands of years, date fruit (Phoenix dactylifera L.) has been a popular diet in arid and semi-arid locations. It has religious importance for Muslims and is especially important during the holy month of Ramadan. The global output of date fruits has been continuously expanding, with Arab nations accounting for a sizable portion. The emphasis of this research is on two popular semi-dry Algerian date fruit types, Deglet Noor and Arechti, which are grown in the Ziban region. These fruits' physical parameters, such as size, sphericity, surface area, volumes, and density, were determined. The goal of this study was to create a mass model based on these physical attributes to help in the grading and sorting of date fruits. Fruit mass was shown to be closely connected to linear dimensions, arithmetic and geometric mean diameters, surface area, and volumes. Correlations between mass and physical attributes were established using a variety of mathematical models, including linear, quadratic, S-curve, and power models. The results demonstrated the applicability of specific factors for mass modeling, offering useful insights for the development of system sizing and conservation. With good correlation, multivariate data analysis was employed to correctly estimate the mass of both kinds. This research advances our understanding of the physical features of Algerian date fruits and their connection to mass, allowing for better handling, sorting, and packing processes in the worldwide date market.

4.
Plants (Basel) ; 13(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611465

RESUMO

Abiotic stresses pose significant challenges to wheat farming, yet exploiting the genetic variability within germplasm collections offers an opportunity to effectively address these challenges. In this study, we investigated the genetic diversity of key agronomic traits among twenty durum wheat cultivars, with the intention to pinpoint those better suited to semi-arid conditions. Field trials were conducted at the ITGC-FDPS Institute, Setif, Algeria, during the winter season of 2021/22. A completely randomized design was used with three replicates. Statistical analyses revealed significant variation among the genotypes for most of the studied traits, with some cultivars exhibiting a superior performance in a stressful environment. Notably, traits like the number of grains per spike (NGS) and the grain yield (GY) displayed high genotypic coefficients of variation (CVg). Except for membrane thermostability (MT) and biological yield (BY), the majority of the assessed traits exhibited moderate-to-high heritability estimates. Genotypic and phenotypic correlation studies have confirmed the importance of many yield-related traits in the expression of GY. The harvest index (HI) underscored the highest genotypic direct effect on GY, followed closely by spike number (SN), serving as consistent pathways through which most of the measured traits indirectly influenced GY. The cluster analysis categorized the durum wheat cultivars into seven distinct clusters. The largest inter-cluster distance was observed between clusters G3 and G4 (D2 = 6145.86), reflecting maximum dissimilarity between the individuals of these clusters. Hybridizing divergent clusters may benefit future breeding programs aiming to develop potential durum wheat varieties through cross combinations. This study's findings contribute to sustainable agriculture efforts by facilitating the selection of genotypes with enhanced resilience and productivity, particularly for cultivation in challenging semi-arid regions.

5.
Sci Bull (Beijing) ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38503651

RESUMO

Trading water for carbon has cautioned large-scale afforestation in global drylands. However, model simulations suggested that the consumption of soil water could be partially offset by increasing precipitation due to vegetation feedback. A systematic meta-analysis of long-term and large-scale field observations is urgently required to address the abovementioned limitations, and the implementation of large-scale afforestation since 1978 in northern China provides an ideal example. This study collected data comprising 1226 observations from 98 sites in northern China to assess the variation in soil water content (SWC) with stand age after afforestation and discuss the effects of tree species, precipitation and conversions of land use types on SWC. We found that the SWC has been decreased by coniferous forest and broadleaf forest at rates of 0.6 and 3.2 mm decade-1, respectively, since 1978. There is a significant declining trend of SWC with the stand age of plantations, and the optimum growth stage for plantation forest is 0-20 a in northern China. However, we found increases in SWC for the conversion from grassland to forest and in the low-precipitation region, both are corresponding to the increased SWC in coniferous forest. Our study implies that afforestation might lead to a soil water deficit crisis in northern China in the long term at the regional scale but depends on prior land use types, tree taxa and the mean annual precipitation regime, which sheds light on decision-making regarding ecological restoration policies and water resource management in drylands.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38503952

RESUMO

In Santa Quitéria City, part of the population uses surface water for potation. These waters do not undergo any treatment before consumption. As the region has a deposit of uranium, assessing water quality becomes important. In the present study, the uranium activity concentration (AC) in becquerels per liter was determined in water samples from six points. Univariate statistics showed differences between the soluble and the particulate fraction (soluble AC > particulate AC). The particulate fraction showed no variation in AC among the six points. On the other hand, the soluble fraction and the total fraction presented different ACs between them. The multivariate statistics allowed to separate the soluble from the particulate fraction of the points. The same tools applied to the total fraction made it possible to differentiate the sampling points, grouping them ((#1, #2); (#3, #4), and (#5, #6)). The maximum mean value of AC found was 0.177 Bq∙L-1, corresponding to 25% of the chemical toxicity limit (0.72 Bq∙L-1). The maximum mean dose rate, 2.25 µSv∙year-1, is lower than the considered negligible dose rate (> 10 µSv∙year-1). The excess lifetime cancer risk was 10-6, two orders of magnitude smaller than the threshold considered for taking action. The assessment parameters used in this work indicate that the risk due to the uranium intake by the local population is negligible.

7.
Ying Yong Sheng Tai Xue Bao ; 35(1): 17-24, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38511435

RESUMO

We established the systematic concept framework of shelterbelt construction, with "shelterbelts" as the core concern in the construction of integrated ecosystems including mountain, river, forest, farmland, lake, grassland and sandy-land in semi-arid wind-sand areas. In the construction of shelterbelts, it is necessary to adhere to the principles of scientific coordination and systematic management, considering the carrying capacity of water resources, the demand for dust control, the greening and beautification effects, as well as the principle of improving economic benefits. In practice, the construction methods should base on the types and temporal-spatial distribution of shelterbelts, following the shelterbelts construction theory and technology to form different structure and service functions, achieving the functional goals of shelterbelts. By focusing on the key elements including people, forests, grass, fields, water, and sand, we put forward the timeliness, practicality, and scientificity of shelterbelt construction, proposing construction methods for farmland shelterbelts, pastureland shelterbelts, windbreak and sand-fixing forests and protective forest around village (city), which might provide production technical support for the high-quality construction of green ecological barrier in northern China.


Assuntos
Ecossistema , Vento , Humanos , Fazendas , Pradaria , Rios , Lagos , Florestas , Conservação dos Recursos Naturais , China
8.
Ying Yong Sheng Tai Xue Bao ; 35(1): 73-79, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38511442

RESUMO

Alien invasive plants have been found in the semi-arid region of Northeast China for a long time, but the overall invasion situation is rarely reported. In this study, we established a database of alien invasive plants in the semi-arid area of Northeast China through field investigation, specimen collection, research of specimen online information platform and literature. The results showed that there were 34 species of alien invasive plants belonging to 26 genera and 10 families in the semi-arid area of Northeast China, among which the Composite family had the largest number of richness, with 9 genera (34.6%) and 11 species (32.4%). There were 15 species (44.1%) in 11 genera (42.3%) of Legumes, Solanaceae and Gramineae. In all the alien invasive plants, 33 species were herbaceous plants, being overwhelmingly dominant (97.1%). There were both 7 species of countrywide invasive plants with invasive grade 1 and 2, each accounting for 20.6% of the total. The number of species with invasive grade 4 was the largest, 17 species, accounting for 50% of the total. The invasive plants originated in North America and Europe was the most, accounting for 64.7%, while those from South America, Asia and Africa accounted for 35.3%. Totally, 44.1% of all the invasive alien plants were intentionally introduced, while 55.9% were unintentionally introduced. In the semi-arid area of Northeast China, 81.3% of the counties (cities) had the distribution of alien invasive plants, and the invasion situation was very serious.


Assuntos
Espécies Introduzidas , Plantas , Humanos , Europa (Continente) , China , Verduras , Ecossistema
9.
Front Microbiol ; 15: 1365234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550859

RESUMO

Solar photovoltaic (PV) power generation is a major carbon reduction technology that is rapidly developing worldwide. However, the impact of PV plant construction on subsurface microecosystems is currently understudied. We conducted a systematic investigation into the effects of small-scale light stress caused by shading of PV panels and sampling depth on the composition, diversity, survival strategy, and key driving factors of soil bacterial communities (SBCs) under two vegetation restoration modes, i.e., Euryops pectinatus (EP) and Loropetalum chinense var. rubrum (LC). The study revealed that light stress had a greater impact on rare species with relative abundances below 0.01% than on high-abundance species, regardless of the vegetation restoration pattern. Additionally, PV shadowing increased SBCs' biomass by 20-30% but had varying negative effects on the numbers of Operational Taxonomic Unit (OTU), Shannon diversity, abundance-based coverage estimator (ACE), and Chao1 richness index. Co-occurrence and correlation network analysis revealed that symbiotic relationships dominated the key SBCs in the LC sample plots, with Chloroflexi and Actinobacteriota being the most ecologically important. In contrast, competitive relationships were significantly increased in the EP sample plots, with Actinobacteriota having the most ecological importance. In the EP sample plot, SBCs were found to be more tightly linked and had more stable ecological networks. This suggests that EP is more conducive to the stability and health of underground ecosystems in vulnerable areas when compared with LC. These findings offer new insights into the effects of small-scale light stress on subsurface microorganisms under different vegetation restoration patterns. Moreover, they may provide a reference for optimizing ecological restoration patterns in fragile areas.

10.
Sci Rep ; 14(1): 6114, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480739

RESUMO

Changes in water availability have a substantial impact on the sustainability and maintenance of agriculture, with water footprint (WF) being a robust methodology to assess these transformations. The Guadalupe Valley is one of the places with the highest agricultural production in Mexico. Despite its semi-arid climatic conditions, it provides high-quality crops that are well-positioned in the world. The historical trend of rainfall and temperatures between 1987 and 2017 was analyzed to identify climatic patterns in the territory. Through the calculations of the water footprint of Grapevine and Olive crops, the sensitivity of the crops to recurrent water deficit and their adaptation in their yields to drought episodes was identified. The reduction in precipitation and occurrence of extreme temperatures have contributed significantly towards augmenting crop evapotranspiration and, consequently, intensifying crop irrigation demands. As a result, there has been an apparent increase in the consumption of WFagricultural since 2007. Thus, the period of highest WFagricultural consumption was 2014 (Extremely dry), as opposed to 2011 (Very wet). In particular, the lowest WFgreen consumptions were observed in extremely dry years, that is, > 20% of the WFagricultural intensifying drought events. Therefore, these periods were compensated with higher uses of WFblue and WFgray, which are inversely correlated with precipitation, where vine crops consume 73% more WFagricultural compared to olive plantations, showing greater interannual variability. These results contribute to analyzing the temporal evolution of water consumption for agriculture, providing a basis for rational water use strategies.

11.
Sci Total Environ ; 925: 171735, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494018

RESUMO

The ecosystems in China's arid and semiarid regions are notably fragile and experiencing dramatic land degradation. At the 12th Conference of the Parties (COP12) to the United Nations Convention to Combat Desertification (UNCCD) in October 2015, a definition for land degradation neutrality (LDN) was proposed and subsequently integrated into the Sustainable Development Goals (SDGs). Research on LDN has developed in terms of conceptual framework constructions, quantitative assessments, and empirical studies. However, LDN and its drivers must be clarified in China's arid and semiarid regions since some representative processes have yet to be fully considered in the assessment. Here, we develop an LDN indicator system specialised for the area, assess their LDN status, and determine the impacts of human activities and climate change on LDN. Our research aims to refine the LDN indicator system tailored for China's arid and semiarid regions by incorporating the trends of wind and water erosion. We also identify the influence of human activity and climate change on LDN, which provides insightful strategies for ecological restoration and sustainable development in drylands with climate-sensitive ecosystems. The results show that: (1) In 2020, more than half of areas of China's arid and semiarid regions achieved LDN, with more pronounced success in the southeastern areas compared to the central regions. (2) For LDN drivers, elevation shows negligible influence on LDN, whereas increased temperature promotes LDN achievement. Conversely, factors like vapour pressure deficit and v-direction wind speed hinder it. In conclusion, China's arid and semiarid regions achieved LDN, and the dominant factor that substantially influences LDN varies across geographical zones, with higher wind speeds and elevated GDP levels generally obstructing LDN in most areas.

12.
Sci Total Environ ; 926: 172100, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38556007

RESUMO

Anthropogenic eutrophication is known to impair the diversity and stability of aboveground community, but its effects on the diversity, composition and stability of belowground ecosystems are not yet fully understood. In this study, we conducted a 9-year nitrogen (N) and phosphorus (P) addition experiment in a semi-arid grassland of Northern China to elucidate the impacts of nutrients addition on soil fungal diversity, functional guilds, and co-occurrence networks. The results showed that N addition significantly decreased soil fungal diversity and altered fungal community composition, whereas P addition had no impact on them. The relative abundance of arbuscular mycorrhizal fungi and leaf_saprotroph were reduced by N and P addition, but P addition enhanced the abundance of saprotrophic fungi. Co-occurrence network analysis revealed that N addition destabilized fungal network complexity and stability, while P addition slightly increased the network complexity. Additionally, the network analysis of N × P interaction revealed that P addition mitigated negative effects of N addition on network complexity and stability. Structural equation modeling (SEM) results suggested that nutrients addition directly or indirectly influenced the fungal community structure through the loss of plant richness and the increase of perennial grass biomass. These findings indicate that in comparison to P addition, N addition exhibits a pronounced negative effect on soil fungal communities. Our findings also suggest that changes in plant functional groups under nutrients deposition are pivotal in shaping soil fungal community structure in semi-arid grassland and highlight the need for a better understanding of the belowground ecosystem dynamics.


Assuntos
Ecossistema , Pradaria , Solo/química , Biomassa , Plantas , Microbiologia do Solo , China
13.
Res Vet Sci ; 171: 105199, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458043

RESUMO

Human-induced ecosystem fragmentation is one of the drivers causing wildlife migration from their natural habitats to urban areas, among other reasons. The red fox (Vulpes vulpes) is the most abundant wild canid in the semi-arid Mediterranean areas of the Iberian Peninsula. Water scarcity may result in areas shared by synanthropic fox populations and domestic animals becoming hotspots for parasite transmission. This study describes the gastrointestinal and cardiopulmonary nematode species affecting fox populations in these semi-arid areas and the influence of environmental variables on parasite abundance. A total of 167 foxes collected from 2015 to 2021 in the Region of Murcia (SE Spain) were analysed. Parasite abundance and spatial distribution were evaluated using environmental variables and host characteristics with a Generalised Linear Model and the Moran index. Eleven species (seven from the gastrointestinal tract and four from the cardiopulmonary tract) were described. The influence of biotic and abiotic variables was studied for Angiostrongylus vasorum, Crenosoma vulpis, Uncinaria stenocephala, Toxocara canis and Toxascaris leonina. Temperature, humidity and areas of forest or agricultural land influenced the abundance of these parasites, providing optimal conditions for free-living stages of the direct life cycle nematodes and intermediate hosts. Absolute abundance distribution maps showed defined locations for C. vulpis, T. canis and T. leonina. The results for U. stenocephala, T. canis and T. leonina were particularly important as their higher abundance levels were found close to anthropized areas, which need to be carefully evaluated to prevent transmission of these nematodes between domestic and wild canids and human health.


Assuntos
Metastrongyloidea , Parasitos , Animais , Ecossistema , Raposas/parasitologia , Trato Gastrointestinal , Coração/parasitologia
14.
J Environ Manage ; 356: 120718, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537467

RESUMO

Global climate change is predicted to increase exogenous N input into terrestrial ecosystems, leading to significant changes in soil C-cycling. However, it remains largely unknown how these changes affect soil C-cycling, especially in semi-arid grasslands, which are one of the most vulnerable ecosystems. Here, based on a 3-year field study involving N additions (0, 25, 50, and 100 kg ha-1 yr-1 of urea) in a semi-arid grassland on the Loess Plateau, we investigated the impact of urea fertilization on plant characteristics, soil properties, CO2 and CH4 emissions, and microbial C cycling genes. The compositions of genes involved in C cycling, including C fixation, degradation, methanogenesis, and methane oxidation, were determined using metagenomics analysis. We found that N enrichment increased both above- and belowground biomasses and soil organic C content, but this positive effect was weakened when excessive N was input (N100). N enrichment also altered the C-cycling processes by modifying C-cycle-related genes, specifically stimulating the Calvin cycle C-fixation process, which led to an increase in the relative abundance of cbbS, prkB, and cbbL genes. However, it had no significant effect on the Reductive citrate cycle and 3-hydroxypropionate bi-cycle. N enrichment led to higher soil CO2 and CH4 emissions compared to treatments without added N. This increase showed significant correlations with C degradation genes (bglA, per, and lpo), methanogenesis genes (mch, ftr, and mcr), methane oxidation genes (pmoA, pmoB, and pmoC), and the abundance of microbial taxa harboring these genes. Microbial C-cycling genes were primarily influenced by N-induced changes in soil properties. Specifically, reduced soil pH largely explained the alterations in methane metabolism, while elevated available N levels were mainly responsible for the shift in C fixation and C degradation genes. Our results suggest that soil N enrichment enhances microbial C-cycling processes and soil CO2 and CH4 emissions in semi-arid ecosystems, which contributes to more accurate predictions of ecosystem C-cycling under future climate change.


Assuntos
Ecossistema , Pradaria , Dióxido de Carbono/análise , Solo/química , Metano/análise , Fertilização
15.
Sci Rep ; 14(1): 6845, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514851

RESUMO

Land degradation by deforestation adversely impacts soil properties, and long-term restoration practices have been reported to potentially reverse these effects, particularly on soil microorganisms. However, there is limited knowledge regarding the short-term effects of restoration on the soil bacterial community in semiarid areas. This study evaluates the bacterial community in soils experiencing degradation (due to slash-and-burn deforestation) and restoration (utilizing stone cordons and revegetation), in comparison to a native soil in the Brazilian semiarid region. Three areas were selected: (a) under degradation; (b) undergoing short-term restoration; and (c) a native area, and the bacterial community was assessed using 16S rRNA sequencing on soil samples collected during both dry and rainy seasons. The dry and rainy seasons exhibited distinct bacterial patterns, and native sites differed from degraded and restoration sites. Chloroflexi and Proteobacteria phyla exhibited higher prevalence in degraded and restoration sites, respectively, while Acidobacteria and Actinobacteria were more abundant in sites undergoing restoration compared to degraded sites. Microbial connections varied across sites and seasons, with an increase in nodes observed in the native site during the dry season, more edges and positive connections in the restoration site, and a higher occurrence of negative connections in the degradation site during the rainy season. Niche occupancy analysis revealed that degradation favored specialists over generalists, whereas restoration exhibited a higher prevalence of generalists compared to native sites. Specifically, degraded sites showed a higher abundance of specialists in contrast to restoration sites. This study reveals that land degradation impacts the soil bacterial community, leading to differences between native and degraded sites. Restoring the soil over a short period alters the status of the bacterial community in degraded soil, fostering an increase in generalist microbes that contribute to enhanced soil stability.


Assuntos
Bactérias , Solo , RNA Ribossômico 16S/genética , Brasil , Bactérias/genética , Acidobacteria/genética , Microbiologia do Solo
16.
J Contam Hydrol ; 262: 104324, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447261

RESUMO

In arid and semi-arid areas with <400 mm of precipitation, evapotranspiration (ET) accounts for about 80% of precipitation and is the main water consumer in the watershed. However, vegetation greening in recent years will increase ET and exacerbate the aridity of the area by affecting soil moisture in the root system. Vegetation changes are regional and spatially heterogeneous, therefore, in order to characterize ET changes under vegetation dynamics, it is necessary to expand the spatial scale of ET simulation. However, widely used evapotranspiration simulation models, such as the Shuttleworth-Wallace model (SW model), are deficient in reflecting the direct and indirect effects of vertical (i.e., soil depths) and horizontal (i.e., vegetation dynamics) directions. Based on field sampling and constructed structural equation model (SEM), we found that vegetation dynamics affect evapotranspiration not only directly, but also indirectly by affecting soil moisture at different depths. On this basis, we defined the weighting coefficients of 0.85 and 0.15 for grassland vegetation zones, 0.3, 0.15, 0.20, 0.25, 0.10 for forest-grass interspersed zones, and 0.20, 0.55, 0.25 for forested zones, respectively, based on the SEM results. Different soil moisture weighting coefficients were defined within different vegetation type zones and the improved SW model is called S-W-α. Comparing the simulation results with the measured data, S-W-α improved the ET simulation accuracy in this region by 33.92% and the improved ET spatial trend can respond to the dynamic changes of vegetation. Replacing the ET module in the Block-wise use of TOPMODEL and Muskingum-Cunge method mode (BTOP model) with the modified S-W-α, the results show that the simulation accuracy of the improved model is increased by 25%, and the Nash is higher than 75% for both the rate period and the validation period, which realizes the extension of the model from the point scale to the basin scale. The modified model may provide technical support for simulation of evapotranspiration and management of ecosystem health in ecologically fragile areas.


Assuntos
Ecossistema , Rios , Solo , Modelos Teóricos , Água , China
17.
Sci Total Environ ; 923: 171440, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442763

RESUMO

Snowpack is closely related to vegetation green-up in water-limited ecosystems, and has effects on growing-season ecosystem processes. However, we know little about how changes in snowpack depth and melting timing affect primary productivity and plant community structure during the growing season. Here, we conducted a four-year snow manipulation experiment exploring how snow addition, snowmelt delay and their combination affect aboveground net primary productivity (ANPP), species diversity, community composition and plant reproductive phenology in seasonally snow-covered temperate grassland in northern China. Snow addition alone increased soil moisture and nutrient availability during early spring, while did not change plant community structure and ANPP. Instead, snowmelt delay alone postponed plant reproductive phenology, and increased ANPP, decreased species diversity and altered species composition. Grasses are more sensitive to changes in snowmelt timing than forbs, and early-flowering forbs showed a higher sensitivity compared to late-flowering forbs. The effect of snowmelt delay on ANPP and species diversity was offset by snow addition, probably because the added snow unnecessarily lengthens the snow-covering duration. The disparate effects of changes in snowpack depth and snowmelt timing necessitate their discrimination for more mechanistic understanding on the effects of snowpack changes on ecosystems. Our study suggests that it is essential to incorporate non-growing-season climate change events (in particular, snowfall and snowpack changes) to comprehensively disclose the effects of climate change on community structure and ecosystem functions.


Assuntos
Ecossistema , Pradaria , Plantas , Mudança Climática , Congelamento , Neve , Estações do Ano
18.
Plants (Basel) ; 13(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38475507

RESUMO

Macrochloa tenacissima (M. tenacissima), or esparto, is a perennial tussock grass that coexists with Pinus halepensis (P. halepensis) in semi-arid Mediterranean woodlands. This research was carried out to explore diurnal transpiration at leaf level in esparto grass under different levels of pine-esparto competition and in contrasting environmental soil water conditions. The measurement period spanned from the summer of 2020 to the spring of 2021. The relationship between transpiration and competition was conducted in open and closed P. halepensis stands, and the type of leaf (green, senescent) and the maturity of the esparto grass were taken into account. We observed a higher control of transpiration in green leaves, and the correlations between the transpiration and pine competition were noted exclusively in this type of leaf. Our results demonstrated a significant impact of pine competitors (closed stands) on the transpiration of esparto grass, particularly during seasons characterized by scenarios of high water demand: the summer drought period and the commencement of the growing and flowering period (spring). Furthermore, our findings revealed a greater response to transpiration in mature bushes compared to young ones under severe water stress, indicating a higher adaptation to drought by esparto as it ages. Although our results confirmed that PAR increased transpiration in all seasons and in both stands, which is attributable to the heliophilia of esparto grass, the site effects on transpiration could also be attributable to competition for water, especially during periods of drought. These results may have important implications for the dynamics and management of these semi-arid mixed woodlands, as well as the planning of reforestation programs aimed at restoring esparto grass formations.

19.
Animals (Basel) ; 14(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38539982

RESUMO

Global climate change inflicts unambiguous risks on agricultural systems and food security. Small ruminants are known for their ability to adapt to changing environmental conditions. This paper aims to characterize sheep production systems in a vulnerable agricultural zone and the breeders' perceptions of climate change to apprehend challenges that they are confronting, and formulate resilience actions. The data analysis is based on 94 semi-structured surveys of sheep farmers carried out in the Tunisian semi-arid region. The PCA analysis results revealed three main sheep production systems. The agro-pastoral rain-fed system (AGPRF) is dominant (55%), with large farms and common pastures integrating cereals and fodder. The agro-pastoral irrigated system (AGPI: 20%) is characterized by small-area and forage irrigation (1.8 ha) and a smaller number of ewes but a greater use of animal feed supplementation. The agro-sylvo-pastoral system (AGSP: 25%) is a system where grazing is based on common lands and using tree sub-products, while the agricultural area is exclusively used to cultivate cereal crops. Sheep breeders' climate perceptions are summarized as unpredictable climate events, a decrease in precipitation, and an increase in temperature. Resilience actions principally consist of reducing flocks' numbers, using alternative local feed, fodder, and water resources, and building more shelters and planting more trees in the grazing areas. Nevertheless, cost-effectiveness should be considered in such vulnerable zones to insure the sheep production systems' sustainability.

20.
Anat Histol Embryol ; 53(2): e13029, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450842

RESUMO

In the northeastern region of Brazil, sheep and goat farming, encompassing around 20 million animals, is predominantly a subsistence activity. Forage quality plays a crucial role in animal productivity, posing a complex interplay between plant and animal aspects. The Caatinga biome, vital for livestock in the region, serves as a significant source for animal diet through pastures. This study aimed to conduct a histomorphometric evaluation of sheep rumens in a semi-extensive system, comparing those feeding on native Caatinga pastures to those on cultivated pastures. Histological processing followed standard protocols, with morphometry focusing on six viable rumen papillae and the submucosa and muscular layer thickness. Statistical correlation analysis revealed morphological differences in papillae across various rumen regions. Morphometric data indicated no significant difference in papillae area between the groups, with average values in Group A surpassing those in Group B, except for width. This study establishes a morphological and morphometric pattern for rumen regions linked to diet types-native or cultivated. The findings not only enhance understanding of the dietary foundation in the Caatinga's extensive system, but also contribute valuable insights for formulating nutritional strategies to enhance sheep production in the region. This research sheds light on the intricacies of forage-based animal nutrition, particularly in semi-extensive systems, offering a foundation for future studies and practices to optimise livestock management in the northeastern Brazilian context.


Assuntos
Rúmen , Estômago de Ruminante , Animais , Ovinos , Fenômenos Fisiológicos da Nutrição Animal , Brasil , Cabras , Gado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...